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Abstract

In this work, the influence of background noise, reverberation and
frequency filtering on the quality of a subsequent speech-to-text sys-
tem is investigated (using Mozilla DeepSpeech). Also, three speech en-
hancement models were used to investigate the extent to which these
confounding factors could be neutralized. The results indicate that
reverberation has the strongest negative influence, followed by super-
imposed noise and frequency filtering. The system used for de-noising
was able to neutralize the negative influence of superimposed noise
best, compared to the other two categories.
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1 Introduction

The aim of the present work is to investigate the influence of dif-
ferent confounding factors on the quality of the results of automatic
speech recoginition (ASR) systems. As described in section 3.6, neu-
tralizing the influence of interfering factors with the goal of improving
the quality of transcriptions has already been extensively studied in
the context of optimizing end-to-end speech-to-text (STT) systems,
and such systems are also openly available (e.g. Facebook’s fairseq
framework [1]). A drawback of this approach is the requirement to
have access to the actual STT system in order to adapt its archi-
tecture. Furthermore, these approaches are not parametric, meaning
that specific parameters such as the intensity of individual speech en-
hancement components cannot be selectively controlled. The present
work aims at providing a reasonable categorization of relevant con-
founding factors for a subsequent STT system, as explained in section
4.1, and the subsequent application of such confounding factors to a
baseline data set in order to measure the concrete impact on its per-
formance. Ultimately, exemplary speech enhancement models will be
used to investigate potential improvements with respect to the subse-
quent STT system. The evaluation of the obtained data is performed
by the CEASR framework proposed by Ulasik et al. in [22].
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2 Theory

2.1 Acoustic properties of speech

According to Mapp in [2] speech mainly covers the frequency range
from 100 Hz to 8 kHz, where higher frequencies up to 12 kHz are only
affecting the overall sound and timbre, which suggests that intelligi-
bility is only influenced little by frequencies in this range. This is also
reflected in figure 1, that shows the importance of different frequency
bands w.r.t. intelligibility.

Figure 1: Octave-band contributions to speech intelligibility. Source: [2]

2.2 Measuring the error rate of a system

As stated in [3], in order to adequately assess relative error reduction
in STT systems, on the one hand, a test data set containing more than
500 sentences from at least 5-10 speakers and, on the other hand, a
metric to adequately measure this reduction is needed.

2.2.1 Word Error Rate WER

A commonly used metric for assessing the relative error reduction is
the word error rate (WER). To determine the WER, the first step
is to match a recognized utterance of an STT system with a correct
reference utterance. In a second step, the number of insertions, dele-
tions, and substitutions are summed and divided by the total number
of words in the reference sentence, where Huang et al. define them in
[3] as follows:
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• Substitution S: an incorrect word was substituted for the correct
word

• Deletion D a: correct word was omitted in the recognized sen-
tence

• Insertion I: an extra word was added in the recognized sentence

The equation for calculating the word error rate, using substitutions,
insertions and deletions is then:

WER = 100%× S +D + I

no. of words in correct sentence
(1)

2.3 Convolutions in the context of audio Pro-
cessing

2.3.1 LTI - linear time invariant systems

Linearity: If we consider a digital systems T{.}, as explained in [3]
it can be said that it is linear iff it has the property described in
equation 2, for any values a1 and a2. In other words for two signals
x1 and x2 the resulting signal y[n] is identical, regardless of whether
the two signals were first processed by the system T{.} and subse-
quently summed, or whether the sum of the signals x1 and x2 has
been processed by the system.

y[n] = T{a1x1[n] + a2x2[n]} = a1T{x1[n]}+ a2T{x2[n]} (2)

Time invariance: As further stated in [3], a system is time-invariant
if it satisfies the property given in equation 3. This means that the
system T{.} always behaves in the same way, independent of time, i.e.
if the signal x[n] is delayed by n0, the output y[n] is delayed in the
same way.

y[n− n0] = T{x[n− n0]} (3)

Impulse Response: If a system satisfies the properties linearity and
time invariance, it can be described by equation 4, where ∗ is the
convolution operator and h[n] is the impulse response of the system
T{.}. The impulse response h[n] in turn describes the output of the
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system when it receives an impulse as input. Huang et al. [3] explain,
that to characterize an LTI system, we only need to know h[n].

y[n] =

∞!

k=−∞
(x[k]h[n− k]) = x[n] ∗ h[n] (4)

Applying convolutions: Huang et al. explain that the convolu-
tion property states that the Fourier transform of the convolution of
two signals is equivalent to the product of the Fourier transform of
these two signals. Thus, by transforming the signals from the time
domain to the frequency domain, the process of convolution as shown
in equation 4 can be achieved by simple multiplication.

2.3.2 Relevance in the context of audio

Berners et al. mention in [4] that equalizers, filters and reverbs are
such LTI systems. Taking into account the remarks in 2.3.1, it be-
comes apparent that artifacts resulting from amplification and atten-
uation of individual frequency bands, or artifacts caused by (time-
delayed) reflections of the original signal, can be modeled accurately
by recording an impulse response of the system in question (also called
sampling) and a subsequent convolution with the target signal.

The situation is different for artifacts resulting from the addition of
harmonics, where we speak of (non-) harmonic distortion (depending
on whether the partials added by the system are integer multiples
of the existing partials, which cannot be modelled accurately with
impulse responses.

2.4 Reverb - a brief overview

Suppose the setting of a sound source in a closed room; in such a
scenario, we speak of a diffuse field, which, according to MacDonald,
can be described as a space where multiple reflections of the same
sound source reach the listener simultaneously [5].

Huang et al. explain that in such a scenario, a microphone records,
in addition to the direct signal, reflections of walls and other objects
in the respective room. They further point out that current Speech
Recognition systems are not able to cope with reverberated speech to
the extent humans are able to, which leads to poor performance in the
presence of reflections, such as those found in normal office spaces [3].
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Figure 2: Room Impulse Response. Source: [6]

In figure 2, we see the typical development of a signal and its re-
flections in a diffuse field. Välimäki et al. explain in [6] that the sound
waves emitted by a sound source reach a listener usually in multiple
stages. The direct signal reaches a listener after time T0. In the next
phase, referred to in the graphic as early reflections, reflections from
nearby surfaces reach the listener. The late reverberation is the stage
where the reflections themselves hit the various surfaces in the room
and are thus reflected again, with different amplitude i.e. frequency
spectra, depending on the condition of the surface material.

The reverberation time RT60 is defined as the period that elapses
until the amplitude of an acoustic signal, i.e. its reflections, has de-
creased by 60 dB. An approximation can be calculated with Sabine’s
equation (based on Everest in [7]):

RT60 =
0.161V

Sᾱ
(5)

Where:

RT60: the time in seconds required for a sound to decay 60 dB.
V : the volume of the room.
S: the boundary surface area,
ᾱ: the average absorption coefficient.

Example: We assume a room with the following dimensions: Length
= 10m, width = 8m, height = 4m. For the sake of simplicity, we
assume that all walls, ceiling and floor are made of concrete, and we
do not consider windows or doors. We now want to determine the
reverberation time of this room at a frequency of 1 kHz.

1. Find the absorption coefficient for concrete at 1 kHz , which we
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identify as α = 0.05

2. Calculate the volume of the room: V = 320m3

3. Calculate the surface area: S = 304m2

4. Apply equation 5 to obtain: RT60 =
0.161×320
304×0.02 = 8.473s

To summarize: Reverb can be considered as the sum of reflections
of a sound event. The reverberation time RT60, in turn, is the time
interval that elapses until the volume of a signals reflections has de-
creased by 60 dB.

2.4.1 Convolution reverb

Convolutional reverb is a technique where either a synthetically gen-
erated or a recorded room impulse response is applied i.e. convolved
onto a recording, which results in a signal that resembles the charac-
teristic reverberation pattern associated with the room that has been
sampled [8]. In other words one can, by recording an impulse re-
sponse, apply the reverb properties of a given room to any recorded
audio signal. To obtain an impulse response of a room, first a mea-
surement has to be conducted, which can be done by recording the
shooting of a pistol, popping an air balloon or even clapping in ones
hand. It has to be noted however, that the position of the sound-
source relative to the listener is set by the position of the microphone
recording above mentioned sound-sources, and can’t be altered after
the recording process.
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3 Related Work

3.1 Noise reduction

Among different architectures of artificial neural networks, previous
research has shown that RNNs in particular are a suitable tool for
speech enhancement i.e. speech de-noising, and morevoer, as Valentini-
Botinhao et al. note in [9], an effective means for improving the results
of STT systems. Furthermore, Valin was able to show in [10] that an
RNN model (where he uses a GRU-network) with only 4 layers is ca-
pable of outperforming traditional MSE spectral estimators for noise
reduction, although it should be noted that he combines the neural
model with a pitch filter controlled by an algorithmic heuristic.

3.2 Speech source separation

A method that belongs to the category of speech enhancement is
speech source separation, an issue that is closely related to the cock-
tail party effect. Isik et al. could show in [11] that deep clustering is
a promising method for single-channel speech separation, and that it
also has a positive effect on the results of subsequent STT systems.
Their architecture also uses an RNN, but in the form of an LSTM
network. In [12], Luo et al. argue that for speech separation on the
WSJ0-2mix data set, current state-of-the-art results can be achieved
through an architecture based on bidirectional LSTM networks.

3.3 Bandwidth extension

A negative factor to be counteracted by speech enhancement is the
loss of parts of the frequency spectrum of a given audio signal. One
approach which is applied in this context is the so-called bandwidth
extension. In [13], Kuleshov et al. present a procedure called Audio
Super Resolution, which can interpolate missing parts of an audio sig-
nal by using an achitecture based on a convolutional neural network
and thus restore missing parts of the frequency spectrum. The bottle-
neck architecture [13] described by them seems to be a variant of the
autoencoder architecture.
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3.4 Speech de-reverberation

Xiao et al. note in [14] that ASR systems have satisfactory results
when the microphone is in close proximity to a speaker, but that the
performance of such systems is still poor when the microphone is fur-
ther away from the speaker. To counteract this fact, they use a DNN
trained on pairs of clean and reverberant speech signals. They could
report an improvement in the results of subsequent ASR systems, but
they also mention that their approach leads to distortion in the en-
hanced speech signals, when a high reverb component is present [14].
Ernst et al. investigated in [15] approaches to de-reverberation, com-
paring on the one hand a U-Net and on the other hand a GAN with a
U-Net as generator, reporting that their approach would outperform
other methods, which they support by the comparison through the
results of the REVERB Challenge [16].

3.5 Data augmentation

Another approach to counteract the negative influence of confound-
ing factors on the quality of STT results is the application of data
augmentation methods. This approach is particularly suitable for use
in end-to-end systems. In [17] Park et al. introduce SpecAugment, a
method that operates directly on the log mel spectrogram of the input
speech signal. They apply three types of deformations to the signals:
firstly time-warping, which stretches and compresses a spectrogram
in the time domain, secondly frequency masking, which masks a fre-
quency band over the entire duration of the signal, and thirdly time
masking, which masks all of the frequencies of a single time step.

3.6 Intermediate representations of speech

An approach that is also suitable for use in end-to-end systems is to
calculate an intermediate representation of the speech signals in ad-
vance, which is then used as a basis for the subsequent STT task. A
practical realisation of this approach is Wav2Vec which is described
by Schneider et al. in [18]. In detail they describe their approach as
”unsupervised pre-training for speech recognition by learning repre-
sentations of raw audio” [18]. They justify the use of their approach by
the fact that pre-training can be performed using unlabeled data, and
the resulting representations are able to improve the quality of STT
systems while reducing the amount of labeled training data needed.
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4 Methodology

In this section the various confounding factors that have a negative
influence on the quality of ASR system are to be categorized and
then the general procedure, common to all evaluation data sets shall
be described, which includes the application of the CEASR evaluation
framework. In a last step the procedure for the individual categories is
outlined, comprising the degradation of the baseline data set as well as
the subsequent enhancement with the exemplary speech enhancement
models chosen for each category.

4.1 Categorization of confounding factors

As a starting point for the categorization, known factors influencing
speech intelligibility should be considered, whereby the consideration
shall be limited to the acoustic transmission quality of speech signals,
which is only a subset of the total number of factors influencing speech
intelligibility, which again is a subset of the ”context of communica-
tion” [19]. These should then be adapted with regard to the possibility
of creating synthetic data sets, which in turn will serve as the basis
for further investigation.

According to Dong and Lee ”speech intelligibility is often degraded
due to near-end reverberation and background noise” [20]. Mapp ex-
plains that the frequency range of speech lies between 100 Hz and
8 kHz [2], he furthermore notes that ”upper frequencies contribute
most to intelligibility, with the octave band centered on 2 kHz con-
tributing approximately 30%, and the 4 and 1 kHz bands 25% and
20% respectively” [2]. The inclusion of distorted speech signals was
also considered, but was rejected due to the findings of Young et al.
in [21], which indicate that the effects of distortion on speech w.r.t.
intelligibility can be neglected, this was shown for amplitude distor-
tion in communication circuits, which also would have resembled the
setup in the paper at hand. Based on these statements, the following
categories are proposed:

• Reverberated speech signals

• Speech signals superimposed by noise

• Speech signals with reduced frequency range
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4.2 General procedure

Care was taken to ensure that the procedure for the 3 categories was
as similar as possible, as far as this made sense. In the following the
steps and configurations are described.

4.2.1 Processing pipeline

Figure 3: Processing-pipeline

Figure 3 depicts the general processing pipeline. The purple boxes
represent speech datasets, the gray boxes represent framework code,
and the orange boxes represent concrete processing steps.

As can be seen in the figure 3, the first step is to pass the test clean
subset of the LibriSpeech corpus to the software framework in order
to transform the speech samples. The software was designed in such
a way that all effects, both degradation and enhancement steps (the
orange box labeled ”Processing” in the figure), are applied in the
same way over a file hierarchy, the code of which can be found on:
github.com/flurin-g/DegradedSpeech. The result is a copy of the
file hierarchy containing the modified speech samples i.e. the synthe-
sized evaluation data sets. The same procedure was applied to each
of the three defined categories noise, reverb and frequency filtering:
First, a degraded version was created, which was then run through
the software a second time to apply the enhancement effect to what
is shown in the figure as a the round reverse arrow. The concrete
implementation details of the degradation and optimization steps are
given in sections 4.3, 4.4 and 4.5 for each of the three categories.

All data sets, i.e. both the baseline data set and the synthetic eval-
uation data sets are in mono. For all evaluations data sets, regardless
of their respective categories, as a last step the altered speech samples
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were normalized, by applying the operation shown in equation 6, in
order to prevent clipping.

f(x) =
x− x

max(|x|) (6)

In a third step, the unprocessed test clean as well as the modified data
sets were passed to the CEASR framework, which is responsible for
transcribing the samples from all passed data sets. In a fourth step, the
CEASR framework from Ulasik et al. [22] calculated aggregated values
for the WER. By following this procedure it is possible to investigate
the influence of the confounding factors defined in section 4.1 on the
subsequent STT system. These results are the basis for the subsequent
evaluation.

4.2.2 Considerations on the evaluation framework

Figure 4: Comparison of STT Systems (DeepSpeech = S5). Source: [22]

As shown by Ulasik et al. in [22] the CEASR framework provides
the means to utilize multiple models for speech transcription, and to
create a detailed analysis of the performance of the considered STT
models as well as the corpora used. In this work, the STT system
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Mozilla DeepSpeech was used. It was chosen as an exemplary STT
system because it is openly available, and a well documented system,
making it a good example for the category of contemporary end-to-end
STT models. As can be seen in the heatmap shown in figure 4, Mozilla
DeepSpeech ranks in the mid-range of the open source systems, and,
as pointed out by Ulasik et al., the open source systems in general
rank considerably lower than their commercial counterparts.

4.2.3 Baseline data set

The LibriSpeech corpus was chosen as the source for the speech signals,
it contains segments of the recordings of audio-books found in the
LibriVox Project [23]. In order to perform the evaluation of speech
de-noising systems on the evaluation datasets created, and at the same
time to allow the training of such systems on the LibriSpeech corpus,
it was decided to limit the samples used in the creation of evaluation
datasets to the test dataset of the LibriSpeech corpus, which consists
of 5.4 hours of speech recordings [23].

4.3 Speech signals superimposed by noise

4.3.1 Data set used

For the creation of the data set that superimposes noise onto speech
signals the UrbanSound8K data set was used, which contains 8732
recordings of urban sounds [24]. Furthermore the samples were limited
to recordings with the attribute salience=2, which is described by the
authors as occurrences that were subjectively perceived as being in
the background of the recording [24]. This reduced the number of
recordings used to superimpose the speech signals to just over 3’000.

4.3.2 Processing

To allow the addition of noise from the UrbanSound8K data set with
speech signals from LibriSpeech, the sampling rate of the noise samples
had to be reduced from 48 kHz to 16 kHz, which is the sampling
rate used by LibriSpeech. To account for the different lengths of the
samples, the noise samples were truncated, in the case when they
were longer than the respective speech sample or repeated to match
the length of the speech sample. Similar to the reverberated samples,
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the noise sample was scaled by a factor of 0.8 and then mixed with
the speech sample.

4.3.3 De-noising

the Dual Signal Transformation LSTM (DTLN) described by West-
hausen in [25] was used as an exemplary de-noising system, to de-
termine to which extent de-noising is able to improve the quality of
subsequent ASR results, when applied to the created evaluation data
set superimposed by noise.

Figure 5: DTLN model architecture. Source: [25]

The DTLN model consists of 2 separate LSTM modules, where
each of those consists of 2 LSTM layers followed by a fully connected
layer followed by a sigmoid activation function. In the paper of West-
hausen those are called separation cores. The input to the first sep-
aration core is transformed into the frequency domain by applying
a Fast Fourier Transform, its output then ”... is multiplied by the
magnitude of the mixture and transformed back to the time domain
using the phase of the input mixture, but without reconstructing the
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waveform” [25]. Equation 7 describes the transformation of the input
by the first core:

X̂s(t, f) = M(t, f) · |Y (t, f)| · ejφy (7)

Where:

X̂s: Time-frequency representation of the estimated speech signal
M : Mask with values in the range [0,1] which is applied to Y
|Y |: magnitude of the STFT of y
y: The noisy microphone signal

ejφy: Phase of the noisy signal

As one can see when relating figure 5 to equation 7, the first core
is not conditioned to predict the clean speech signal, but rather to
predict a mask, which is then applied to the STFT of the noisy micro-
phone signal. The product of this operation is transformed back with
an inverse STFT, forming the output of the first core. Before the out-
put of the first core is passed on to the second core, it is transformed
by a 1D-convolution, which is used to obtain a feature representation
of the processed input and a subsequent normalization layer. After
the second separation core, a 1D-convolution layer is used again, to
transform the signal back into the time-domain [25].

4.4 Reverberated speech signals

4.4.1 Data set used

As source for the impulse responses, which are used to apply reverb
to the voices, a data set called Echothief was used. It includes, in
addition to regular rooms, impulse responses of several locations in
North America, such as caves, stairwells, underpasses, glaciers and
fortresses. [26].

Echothief contains 78 different impulse responses, which represent
the characteristic reverb properties of real rooms. To be able to eval-
uate models on a subset of these impulse responses in the future,
the dataset was segmented into a test set and a dev set. To create
the evaluation dataset, only the part of the impulse responses were
used, which were annotated with ”test”. Then one of these impulse
responses was randomly applied to a speech sample.
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4.4.2 Processing

In a first step, the respective speech sample was converted into a
pseudo-stereo format in which the mono signal was duplicated iden-
tically for the left and right sides, since the impulse responses were
recorded in stereo. In a second step the impulse responses were con-
volved onto the speech sample, using scipy’s fftconvolve function. Af-
terwards the result of the convolution operation was added to the
original speech sample, scaled by a factor of 0.8. As a last step, the
resulting sample was converted back to mono. In order to keep the
results on the subsequent evaluation on ASR systems comparable, the
reverb tail was cut off on the processed samples, to match the length
of the original speech-samples.

4.4.3 De-reverberation

As an exemplary system to neutralize the reverb component on speech
signals, the approach described in ”Speech Dereverberation Based on
Variance- Normalized Delayed Linear Prediction” (which is also known
as wpe method) by Naktatani et al. was used. Since they only pro-
vide an implementation in Matlab, for the evaluation Hung’s Python
implementation was used, which is available on Github [27]

As already mentioned in section 2.4.1, by convolving an impulse
response of a room onto a target sample, its characteristics can be
transferred. To reverse this process, i.e., to remove the reverberant
parts of a recording, Nakatani et al. [28] focus on finding an inverse
filter for the rooms impulse response, which can then be used to de-
convolve the reverberant recording, thereby aleviating the effect of
reverberation. They use a statistical model-based approach to com-
pute said inverse filter, by which they are able to determine it without
prior knowledge of the room impulse response. They outline their ap-
proach for signals recorded with two microphones, but mention that
in practice it has been shown to be effective for signals recorded with
only one microphone.

xmt =

Lh−1!

k=0

hmk st−k + b
(m)
t (8)

Equation 8 defines the model used. Here x stands for the rever-
berated recording, h for the room impulse response, s for the source
signal and b for noise. A comparison with equation 4 shows that this
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essentially describes the convolution of a source signal with an impulse
response.

yt =

Lm!

m=1

Lw−1!

k=1

w
(m)
k x

(m)
t−k (9)

Equation 9 can be interpreted in a similar way: It describes how
the de-reverberated signal is obtained, namely by applying the inverse
filter w to the reverberated recording x. The process is visualized in
figure 6:

Figure 6: Observation and de-reverberation model: Source [28]

4.5 Speech signals with reduced frequency range

4.5.1 Data set used

No additional data set was needed to create the reduced frequency
spectrum evaluation data set, as this was directly obtained from the
application of the filters described in 4.5.

4.5.2 Processing

In order to give a practical reference to the reduction of the frequency
band, it was decided to use values that are also frequently encoun-
tered in everyday life as a reference point. Therefore the frequency
band of traditional landline phones and VoIP systems was considered.
According to Hecht in [29] the frequency range of traditional landline
telephones spans 300 Hz to 3.4 kHz, and the frequency range of VoIP
systems extends this range to about 7 kHz.

Consequently, it was decided to remove the low frequencies with
a low-cut filter whose cutoff frequency was varied for each sample by
drawing the value from a uniform distribution from the interval [250,
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350] Hz. The same procedure was applied to the high frequencies, but
using the interval [1.5, 3.5] kHz with a high-cut filter. In both cases a
6th order (32db/Oct.) Butterworth filter was used.

4.5.3 Frequency bandwidth extension

As an exemplary system for reconstructing the removed parts of the
frequency spectrum during the creation of the evaluation data set, the
method presented by Kulsehov et al. in [13] was used. The upsampling
of audio signals with the purpose of recovering missing parts of the
frequency spectrum is generally referred to as bandwidth extension.
Kuleshov et al. assume a low-resolution signal x, with a sampling
frequency of R1. From this signal, a higher resolution signal is to be
reconstructed with sampling rate R2:

x = {x1/R1
, ..., xR1T1/R1

}

y = {y1/R2
, ..., yR2T2/R2

}

such that: R2 > R1

Their model is inspired by convolutional autoencoders with the ad-
dition of residual connections, which they use to encourage the model
to learn a hierarchy of features.

Figure 7: Architecture of the audio super-resolution model: Source [13]

As shown in figure 7 , the model is divided into a downsampling,
a bottleneck and an up-sampling part. The down- and up-sampling
parts consist of the same number of blocks, where each block consists
of a convolutional layer and a batch normalization layer followed by
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a ReLU activation function. During the down-sampling the spatial
dimension is halved, which is reversed during the up-sampling.

5 Results

The results of the evaluation are presented in the following. First,
the results concerning the confounding factors i.e. degraded speech
samples will be adressed, and then the speech samples processed by
the speech enhancement models presented in section 4.3.3, 4.4.3 and
4.5.3 will be addressed.

Degraded speech samples
Measure Test clean Added noise Reverberated Frequency filtered
Avg. WER 0.07007 0.48818 0.52963 0.15540
Q1 WER 0.00000 0.12500 0.17583 0.00000
Q2 WER 0.02703 0.42857 0.50000 0.10345
Q3 WER. 0.10000 0.89905 0.91667 0.22222
Min. WER 0.00000 0.00000 0.00000 0.00000
Max. WER 1.00000 1.50000 1.25000 2.00000

Table 1: Influence of the confounding factors on the WER of DeepSpeech.
Q1-3 denote 1st-3rd quartile.

Enhanced speech samples
Measure Test clean De-noised De-reverberated Bandwidth-extend
Avg. WER 0.07007 0.40984 0.50417 0.81454
Q1 WER 0.00000 0.10000 0.15385 0.72727
Q2 WER 0.02703 0.33333 0.44444 0.88799
Q3 WER. 0.10000 0.72270 0.90513 0.97163
Min. WER 0.00000 0.00000 0.00000 0.00000
Max. WER 1.00000 1.50000 1.66667 1.33333

Table 2: Influence of the confounding factors on the WER of DeepSpeech.
Q1-3 denote 1st-3rd quartile.

In tables 1 and 2 the results of the evaluation of the synthetic
evaluation datasets performed by the CEASR framework can be seen.
As already mentioned under 4.2.1, the evaluation is divided into two
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stages: Table 1 shows the results of the first stage, in which the in-
fluence of the confounding factors on the WER of the following ASR
system (in this case Mozilla DeepSpeech) was determined. Table 2
again shows to what extent or if the WER has improved by applying
the speech enhancement models.

5.0.1 Degraded speech samples

Figure 8: Mean and Median of the absolute WER for the degraded speech
samples

In figure 8 The absolute WER of the different confounding factors
is shown. For comparison, the WER of the baseline dataset is shown
in the last line, denoted as Test clean. The first thing to notice is that
frequency filtering has the least effect on WER. However, it must be
noted that these can only be compared with the values of reverberated
and added noise on a conditional basis, since here, in contrast to the
above-mentioned, an addition with an confounding factor did not take
place, but the corresponding frequency components on the original
signal were removed.

The second thing to note is that adding reverb to the speech sam-
ples has a stronger effect on the WER than overlaying it with noise.
It should be noted here that in both cases the speech samples were
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summed with the noise factors, with a scaling factor of 0.8, and fur-
thermore the normalization operation counteracts the influence of any
volume differences. Therefore, this result may indicate that reverb has
a stronger influence on the WER of the subsequent ASR system, in
this case Mozilla DeepSpeech, than the addition of noise.

5.0.2 Enhanced speech samples

Figure 9: Mean and Median of the absolute WER for the enhanced speech
samples

As shown in Figure 9, none of the speech-enhancement models
could completely neutralize the respective confounding factors. How-
ever, what is striking when comparing these results with figure 8 is
that the WER for bandwidth-extended samples is even higher than
that of the frequency-filtered ones. It should be mentioned here that
Kuleshov et al. make a note in this regard on their website, which
justifies these results to some extent:

”the model is very sensitive to how low resolution samples are
generated. Even using a different low-pass filter (Butterworth, Cheby-
shev) at test time will reduce performance.” [30]

Also, as already mentioned in section 4.5.3, Kuleshov et al. imple-
mented the task as an extrapolation of a signal with a lower samplin-
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grate to that of a higher one. While this may suffice for upsampling
w.r.t. to the sampling frequency alone, it might not be for recovering
lost information about the frequency spectrum, which is exactly what
would have been needed to compensate for the loss of said information
when using high- i.e. low-pass filters, as done in the degrading step of
the frequency filtering.

Figure 10: Relative decrease of the median WER for the speech enhancement
models for de-reverbertion and de-noising.

Since the negative influence of the bandwidth extended model can
already be seen in figure 9, this model will not be used in the consider-
ation of the relative change in WER. Comparing the de-reverberated
speech samples with the de-noised speech samples, it is obvious that
the de-noising model is able to reduce the WER by a factor of 2 more
effectively than the de-reverberation model.
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6 Conclusion

As the results in section 5 showed, the effect of frequency filtering
on WER was significantly smaller than for the other two confound-
ing factors. This has to be considered under the assumption that
the bandwidth limitation of typical telephony systems is a relevant
starting point of the optimization. A more in-depth consideration of
the influence of frequency filtering should therefore be preceded by
the identification of the type of different frequency filtering influences,
as an example the loss of high frequency components when Lavaleer
microphones covered with clothing shall be mentioned. Most clearly
recognizable is the negative influence of superimposed noise on the
WER of the STT results, although it could be clarified here whether
this is a specific property of Mozilla’s DeepSpeech, or whether this
can be generalized to other systems. The positive influence of the
used de-noising model, in this case Westhausen’s DTLN model [25],
on the speech samples with superimposed noise is however clearly rec-
ognizable, so that the recommendation of de-noising as a preprocessing
step for STT systems (in particular for Mozilla DeepSpeech) can be
made on the basis of the obtained data. The findings for the negative
influence on the WER in the case of superimposed noise can also be
applied to the addition of reverb. However, it should be noted that
the effect is even more pronounced, and that the model used to reduce
the reverb could not neutralize it to the same extent as was the case
for superimposed noise. This in turn motivates a deeper exploration
of de-reverberation models, as based on the data collected it can be
said that the negative influence was the largest for the examinated
confounding factors, and the ability to neutralize it could have a high
potential for improving STT results, i.e. to reducing the WER of a
subsequent STT system.
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